研究方向
数据挖掘在房地产价格预测中的应用研究 通过基于数据挖掘理论的粗糙集和神经网络的研究,用属性约简算法约简并提取了影响房地产价格的主要指标因素,对降维后的数据进行网络学习和训练,最后用训练好的的网络检验测试样本。提高学习训练的速度和识别率,为房地产价格预测提供了一种更为有效和实用的新途径。
相关学科
计算机科学技术
科研导师
Z. T
- 清华大学与多伦多大学联合培养博士(水利水电工程),本科毕业于武汉大学;
- 主要研究方向:机器学习在工程中的应用,土木工程,水利工程,市政工程,工程管理,数学建模等;
- 期刊论文已发表文章 6 篇(SCI 收录 2 篇,EI 收录 4 篇),并申请3项国家发明专利。
科研成果
成果一:在英文期刊中发表学术论文
有方学者项目能够为学员在正规的英文学术期刊中发表论文。正规的学术期刊均要求由独立审稿人决定论文的录用与否。因此,论文的成功发表标志着这篇文章已达到学界公认的学术标准。有方学者最优秀的学生,不但可以冲击EI、SCI等高级别期刊,而且有机会参与全球顶级的学术会议。
成果二:第一作者身份
有方学者项目坚持帮助学生以第一作者身份发表论文。在申请过程中,招生官最看重的是学生在科研项目中的参与程度,而第一作者顺位恰恰是这一点的最佳证明。近年来,有大量的中国学生在教授署名的论文中挂名,这使得第一作者身份的含金量更为突出。
成果三:独一无二的课题
有方学者项目的导师会为每个学生提供独一无二的课题,连接最前沿的科研方法和学生感兴趣的学术方向,每个学生的研究内容具有差异性。
成果四:顶尖院校导师的推荐信
有方学者项目将为学生提供项目导师撰写的推荐信。导师作为推荐人,来自于美国顶尖学府的科研团队,影响着推荐信的可信度;而导师所提供的丰富的细节和生动的描述能更好展现学生的过人之处,从而大大提高了推荐信的价值。
成果五:高效备战具有高影响力、高含金量的科研竞赛
学生可以直接使用有方学者项目的成果论文冲击多项全球顶级的科研赛事,其中包括:被誉为“中国青年的诺贝尔奖”的丘成桐科学奖、ISEF 国际科学与工程奖、全国青少年科技创新大赛等。
了解更多详情
请扫描二维码
关注「有方背景提升」